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Abstract

Working memory (WM) is the part of the brain’s memory system that provides temporary storage and manipulation of
information necessary for cognition. Although WM has limited capacity at any given time, it has vast memory content in the
sense that it acts on the brain’s nearly infinite repertoire of lifetime long-term memories. Using simulations, we show that
large memory content and WM functionality emerge spontaneously if we take the spike-timing nature of neuronal
processing into account. Here, memories are represented by extensively overlapping groups of neurons that exhibit
stereotypical time-locked spatiotemporal spike-timing patterns, called polychronous patterns; and synapses forming such
polychronous neuronal groups (PNGs) are subject to associative synaptic plasticity in the form of both long-term and short-
term spike-timing dependent plasticity. While long-term potentiation is essential in PNG formation, we show how short-
term plasticity can temporarily strengthen the synapses of selected PNGs and lead to an increase in the spontaneous
reactivation rate of these PNGs. This increased reactivation rate, consistent with in vivo recordings during WM tasks, results
in high interspike interval variability and irregular, yet systematically changing, elevated firing rate profiles within the
neurons of the selected PNGs. Additionally, our theory explains the relationship between such slowly changing firing rates
and precisely timed spikes, and it reveals a novel relationship between WM and the perception of time on the order of
seconds.
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Introduction

Various mechanisms have been proposed to model the main

aspect of neural activity — elevated firing rates of a cue-specific

population of neurons — observed during the delay period of a

working memory (WM) task [1–4]. These include reentrant

spiking activity [5], intrinsic membrane currents [6], NMDA

currents [7–10], and short-term synaptic plasticity [7,11,12].

These mechanisms, however, fail to explain other aspects of

neural correlates of WM [13], and they have been demonstrated

to work only with a limited memory content where the number

of items represented in long-term memory is small, i.e., they hold

in WM a few items (limited capacity [14]) out of only a

conceivable few (limited memory content). Memories in these

simulated networks are often represented by carefully selected,

largely non-overlapping groups [15] of spiking neurons [11].

Indeed, extending the memory content in such networks

increases the overlap between the memory representations

(unless the size of the network is increased, too), and activation

of one representation spreads to others, resulting in uncontrol-

lable epileptic-like ‘‘runaway excitation’’. The narrow memory

content is at odds with experimental findings that neurons

participate in many different neural circuits (see e.g. [16–18])

and, therefore, are part of many distinct representations that

form a vast memory content for WM. These limitations may be

overcome by a model that accounts for the precise spike-timing

nature of neural processing.

We propose a model in which memories are represented by

extensively overlapping neuronal groups that exhibit stereotypical

time-locked, but not necessarily synchronous, firing patterns called

polychronous patterns [19] (see also [20]). In Figure 1, we use a small

network to illustrate this concept: Two distinct patterns of synaptic

connections (red and black connections in Figure 1A–1C) with

appropriate axonal conduction delays form two distinct polychronous

neuronal groups (PNGs). Notice that these PNGs are defined by

distinct patterns of synapses, and not by the neurons per se, which

allows the neurons to take part in multiple PNGs and enables the

same set of neurons to generate distinct stereotypical time-locked

spatiotemporal spike-timing patterns (see Figure 1B and 1C).

PNGs arise spontaneously [19,21] in simulated realistic cortical

spiking networks shaped by spike-timing dependent plasticity [22]

(STDP).

Another distinctive feature of our theory is that synaptic

efficacies are subject to associative short-term changes, that is,

changes that depend on the conjunction of pre- and post-synaptic

activity (see [23–25] for experimental findings supporting this

postulation). We simulated two different mechanisms: (1) associa-

tive short-term synaptic plasticity via short-term STDP, where

short-term synaptic changes — that decay to baseline within a few

seconds — are induced by the classical STDP protocol (Figure 2A);

and (2) the short-term amplification of synaptic responses via

simulated NMDA spikes [8] at the corresponding dendritic sites

(Figure 2B–2D). The latter mechanism is also pre- and

postsynaptic activity dependent: Pre-synaptic spikes alone activate
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postsynaptic NMDA receptors, yet only generate small excitatory

postsynaptic potentials (EPSPs) at the dendritic compartment

(Figure 2D, red trace) because of the magnesium block of the

NMDA receptors. Postsynaptic spikes, however, induce dendritic

membrane potential depolarization and removal of the magne-

sium block. Hence, the dendritic compartment flips into up-state.

While in the up-state, each presynaptic spike results in a large-

amplitude response (often called an NMDA spike) that can

propagate from the dendritic compartment to the soma and

enhance the efficacy of synaptic transmission in eliciting somatic

spikes. The short-term enhancement of synaptic efficacy is similar

to that recorded in vitro [26] and in detailed simulations of

Hodgkin-Huxley-type conductance-based models [27]. (See

Figure 2B–2D and Methods for details.)

We found that the exact form of such short-term synaptic

changes is not important for the WM functionality presented in

this paper (see Results), as long as these changes selectively affect

synapses according to the relative spike timing of pre- and post-

synaptic neurons. For example, activation of the red PNG in

Figure 1 temporarily potentiates the red synapses and not the

black ones (Figure 1B and 1C). This differs from the standard

short-term synaptic facilitation or augmentation used in previous

WM models [7,11], which are not associative, and hence non-

selectively affect all synapses belonging to the same presynaptic

neuron.

In the model presented here, PNGs get spontaneously

reactivated due to stochastic synaptic noise. Short-term strength-

ening of the synapses of selected PNGs can bias these reactivations,

i.e., increase the reactivation rate of the selected PNGs, which

results in activity patterns similar to those observed in vivo during

WM tasks [1–4,13]. Additionally, even though PNGs share

neurons with other PNGs, the activity of one PNG does not

spread to the others. Therefore, frequent reactivation of a selected

PNG does not initiate uncontrollable activity in the network. In

this way, the WM mechanism presented here can work in finite

networks with large memory content. This is different from

previous models [11,28–31] where large memory content and

maintenance of several memory items can only be achieved by a

drastic increase in the size of the network or the number of

connections between neurons.

Results

The Simulated Network
We implemented our model in a simulated network of 1000

spiking neurons [32], where 80% of the neurons are regular

spiking pyramidal neurons and 20% are GABAergic fast spiking

interneurons. The probability that any pair of neurons are

connected equals 0.1. Excitatory synaptic connections have a

random distribution of axonal conduction delays in the [1…20]

ms range [19,33–35]. Excitatory synaptic efficacy is subject to both

associative short-term plasticity and long-term STDP [22].

Maximum synaptic strengths are set so that three simultaneously

arriving pre-synaptic spikes are needed to reliably elicit a post-

synaptic spike. (The Methods section has detailed description of

Figure 1. Illustration of polychronous neuronal groups and associative short-term plasticity. (A) Synaptic connections between neurons
n1, n2, …, n7 have different axonal conduction delays arranged such that the network forms two functional subnetworks, red and black,
corresponding to two distinct PNGs, consisting of the same neurons. Firing of neurons n1 and n2 can trigger the whole red or black PNG: (B) If neuron
n1 fires followed by neuron n2 10 ms later, then the spiking activity will start propagating along the red subnetwork, resulting in the precisely timed,
i.e., polychronous, firing sequence of neurons n3,n4,n5,n6,n7, and in the short-term potentiation of the red synapses. (C) If neurons n2 and n1 fire in
reverse order with the appropriate timings, activity will propagate along the black subnetwork making the same set of neurons fire but in a different
order: n7,n5,n3,n6,n4, which temporarily strengthens the black synapses. Readout: post-synaptic neurons that receive weak connections from
neurons n3, n4, and n5 with long delays and from neurons n6 and n7 with shorter delays (or, alternatively, briefly excited by the activity of the former
and slowly inhibited by the latter) will fire selectively when the red polychronous pattern is activated, and hence could serve as an appropriate
readout of the red subnetwork. A similar readout mechanism is illustrated in [53].
doi:10.1371/journal.pcbi.1000879.g001

Author Summary

Working memory (WM) is the part of the brain’s vast
memory system that provides temporary storage and
manipulation of the information necessary for complex
cognitive tasks, such as language comprehension, learn-
ing, and reasoning. Despite extensive neuroscience
research, its mechanism is not clearly understood. We
exploit a well-known feature of the brain — its ability to
use precisely timed spiking events in its operation — to
show how working memory functionality can emerge in
the brain’s vast memory repertoire. Our neural simulations
explain many features of neural activity observed in vivo
during working memory tasks, previously thought to be
unrelated, and our results point to a relationship between
working memory and other mental functions such as
perception of time. This work contributes to our under-
standing of these brain functions and, by giving testable
predictions, has the potential to impact the broader
neuroscience research field.

Spike-Timing Theory of Working Memory
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the network, neuron model, and synaptic plasticity.) Approxi-

mately 8000 strongly overlapping PNGs emerge spontaneously in

such network (Figure 3) and we select a few to demonstrate how

these mechanisms (PNG formation and associative short-term

plasticity) can serve to maintain WM, and how they can account

for the other related experimental findings.

One Cue in Working Memory
To initiate sustained neuronal activity that characterizes WM, we

select (cue) a random PNG and stimulate its neurons in the sequence

that characterizes the PNG’s polychronous pattern. That is, we

stimulate the intra-PNG neurons sequentially with the appropriate

polychronous pattern 10 times during a one second interval (see e.g.

Figure 4A) to temporarily increase the intra-PNG synaptic efficacy

(see Methods). The red dots in the spike raster in Figure 4A indicate

spikes of the selected target PNG. The initial stimulation of the

target PNG resulted in short-term strengthening of the intra-PNG

synapses via associative short-term plasticity, but had little effect on

the other synapses in the network (Figure 4A, ‘‘short-term synaptic

change’’ curves). Upon termination of the stimulation, the

temporarily facilitated intra-PNG synapses and the noisy synaptic

inputs resulted in sporadic reactivations of different segments of the

target PNG, often leading to the reactivation of the rest of the

polychronous sequence (seen as red vertical stripes in the raster in

Figure 4A and magnified in Figure 4B). Each such reactivation of

the target PNG triggers further strengthening of its synapses,

thereby maintaining the target PNG in the active state for tens of

seconds. Notably, the active maintenance of a PNG in WM does not

depend on a reverberant/looping circuit, but it emerges as a result

of the interplay between non-specific noise (which spontaneously

triggers activation of PNGs) and short-term strengthening of the

appropriate synapses (that makes subsequent reactivations of the

target PNG more likely). There are frequent gaps of hundreds of

milliseconds between spontaneous reactivations of the target PNG,

clearly seen in Figure 4A, but occasional reactivation is necessary to

maintain the PNG in WM. Without the reactivations, the initial

short-term strengthening of intra-PNG synapses decays quickly

(illustrated in Figure 4A, ‘‘decay without replay’’ curve). Figure 4F

shows that almost all of the thousands of emerged PNGs, if

stimulated, remained activated for more then ten seconds in WM

(average 11+8 seconds).

Precise Spike-Timing, Inter-Spike Interval Variability, and
Functional Connectivity Changes during Working
Memory Maintenance

Since spontaneous reactivations of the target PNG in WM are

stochastic, timing of the spiking activity of each neuron in a PNG

also looks random when considered in isolation. The coefficient of

variation (CV) of inter-spike intervals (ISIs), i.e., the variability of

ISIs (see Methods), is higher for individual intra-PNG neurons

when the PNG is in WM [36] (Figure 4C and Figure S6). This

phenomenon is due to the systematically changing and non-

stationary mean firing activities and mean ISIs of the intra-PNG

neurons during replay (see section below). Relative intra-PNG

timing at the millisecond timescale is, however, maintained during

replay, as can be seen in the magnified spike rasters in Figures 4B

and 5C. This is a major feature that distinguishes our approach

from earlier approaches that posit synchronous [11] or totally

asynchronous [7] spiking, and this feature allows our model to have

a vast repertoire of overlapping PNGs, i.e., large memory content.

Cross-correlograms (CCG) of simulated intra-PNG neuronal pairs

also reveal the precisely timed nature of their spiking activity, as well

as the context-dependent changes in functional connectivity linking

Figure 2. Associative short-term plasticity implemented in a
form of short-term-STDP or via simulated NMDA receptors
resulting in NMDA spikes. (A) The synaptic change is triggered by
the classical STDP protocol at time ‘‘stimulation’’ (marked by arrows)
but the change decays to 0 (baseline) within a few seconds. Left panel
shows that firing of only pre- or post-synaptic neurons does not trigger
any synaptic change. The middle panel illustrates that firing in the order
pre-before-post induces short-term augmentation, as opposed to the
post-before-pre (Right panel) resulting in short-term depression. (B–C)
Short-term amplification of synaptic responses via simulated NMDA
receptors resulting in NMDA spikes. (B) Schematic diagram showing a
multi-compartmental neuron (post) receiving a synapse from a pre-
synaptic neuron (pre). (C) A train of presynaptic spikes is followed by a
postsynaptic response delayed by 10 ms and caused by other synaptic
inputs. Each pre-synaptic spike activates postsynaptic NMDA receptors
and deactivates with time constant of 250 ms. (D) Persistent pre-then-
post train of action potentials flips the dendritic compartment into up-
state. While in the up-state, each pre-synaptic spike results in a large-
amplitude dendritic excitatory postsynaptic potential (black trace V
(dendritic)), often called NMDA spike, that can propagate to the soma
and enhance the efficacy of the synaptic transmission in eliciting
somatic spike. The red trace shows the control simulation when the
post-synaptic spikes are absent: No significant increase in synaptic
efficacy is observed in this case. Similarly, post-before-pre patterns do
not result in significant enhancement of synaptic transmission unless
the timing is such that there is a residual depolarization when pre-
synaptic spike arrives, or there is a residual glutamate in synaptic cleft
from the previous pre-spike when post neuron fired. The voltage traces
in sub-panel (D) are simulations of a passive dendritic compartment
with voltage-dependent NMDA conductance.
doi:10.1371/journal.pcbi.1000879.g002

Spike-Timing Theory of Working Memory
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these neurons: The red CCG in Figure 4D is recorded while the

target PNG is in WM, and it has a peak around 5 ms, whereas the

blue CCG (recorded later in a different session, when the PNG is

not activated) is flat. A similar dependence of CCGs of spiking

activity on the behavioral state of the network biased by sensory cues

was reported in medial prefrontal neurons [37].

Systematically Varying Persistent Firing Activity
The average multiunit firing rate of the neurons forming the target

PNG following activation is around 4 Hz, much higher than that of

the rest of the network, which is about 0.3 Hz (Figure 4A, ‘‘multiunit

firing rate’’ red vs. blue solid lines). The average firing rate histograms

of most intra-PNG neurons show distinct temporal profiles that repeat

from trial to trial (Figure 4E and Figure S4): Some neurons only

respond to the initial stimulation (Figure 4E n392); some have ramping

or decaying firing rates (n652); whereas others have their peak activity

seconds after the stimulus offset (n559). Neurons that are not part of

the target PNG show uniform low firing rate activity across the whole

trial (n800). These systematically varying, persistent temporal firing

profiles are similar to those observed experimentally in vivo in frontal

cortex during the delay period of the WM task [1,3,38,39], but no

previous spiking model of WM could reproduce them.

To get the results presented in Figures 4E, only an initial

segment of the target PNG is activated during the selection

(cueing) process (see Methods). Therefore, only the synapses

forming the initial segment of the target PNG get temporarily

potentiated. Hence, directly after stimulation/cuing only the

neurons in the initial segment of the target PNG get more

frequently reactivated as propagation of activation along the PNG

dies out somewhere in the middle of the PNG without activating

the neurons at the back. As frequent spontaneous reactivations

persist, more and more synapses undergo short-term STDP, and

more and more neurons from the end of the target PNG start to

participate in the reactivations. Activities of such neurons show

ramping up firing rates (Figure 4E n559). Conversely, neurons in

the initial segment of the PNG may not participate in enough

reactivations and, therefore, synapses to those neurons decay back

to their baseline strength, resulting in a ramping down firing

profile (n392 Figure 4E). In general, the slowly changing firing

rates are generated by spontaneous incomplete activations within

the target PNG: Neurons that are initially stimulated typically do

not get reactivated or get reactivated only shortly after the target

PNG stimulation and, therefore, exhibit ramping down firing

profile (n392, n652); In contrast, those that join just later the wave

of reactivation (Figure S4E) express ramping up (and later down)

firing activity (n559).

Working Memory and Timing
These stereotypical firing rate profiles may be utilized to encode

time intervals [38,40]. For example, a motor neuron circuit that

Figure 3. Properties of the emerging polychronous neuronal groups. (A) The number of emerging distinct PNGs equals 7825 for the network/
simulation used (described in Methods). On average, a PNG consists of 41 neurons, (B) and their average duration is 88 milliseconds. (C) Each PNG
shares at least 10 neurons, on average, with 1050 other groups. 5% of neurons of any particular group are shared with any other group in the
network (not shown). (D) Distribution of frequencies of activation of PNGs in the simulated and surrogate (inverted time) spike trains. Surrogate data
emphasize the statistical significance of these events. Modified with permission from [19]. (E, F) Each neuron participates in 309+193 different
groups.
doi:10.1371/journal.pcbi.1000879.g003

Spike-Timing Theory of Working Memory
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needs to execute a motor action 10 seconds after a GO signal

might have strong connections from neurons such as n559 in

Figure 4E, and be inhibited by the activity of neurons such as

n652. Moreover, a sequence of behaviors could be executed by

potentiating connections from multiple subsets of the PNG to

multiple motor neuron circuits (e.g., via dopamine-modulated

STDP [41]). Activations of multiple representations in WM, as

illustrated in Figure 5, could implement multiple timing signals

and multiple sequences of actions.

Multiple Cues in Working Memory
In a single network, multiple PNGs, i.e., multiple memories, can

be loaded and maintained in WM simultaneously despite large

overlap in their neuronal composition. In Figure 5A we stimulate

two PNGs sequentially (out of the thousands available PNGs). The

target PNGs consisted of 220 and 191 neurons each, and have 66

neurons in common. The intra-PNG neurons, however, fire with

different timings relative to the other neurons within each PNG

(Figures 5C and 5D). Therefore, there is little or no interference,

Figure 4. Spike timing nature of working memory - Maintenance of a polychronous neuronal group in working memory. (A) Bottom:
Spike raster of a single trial: Blue dots, firing of all excitatory neurons in the network (inhibitory neurons not shown); Red dots, spikes of the neurons
belonging to the selected target PNG (tPNG) during reactivations of the tPNG. tPNG activated in WM at t~0 seconds (see Methods). (A) Top: Average
multiunit firing rate and short-term synaptic change for tPNG (red) and for the rest of the excitatory neurons (blue). The green curve illustrates how
the short-term change would decay back to baseline in the absence of neural activity after stimulation. (B) Magnified spike rasters of two partial
reactivations of the tPNG neurons at two different times: Red dots, spikes of tPNG neurons; Circles, expected firings (see Methods) of all neurons in
the tPNG. Only neurons belonging to the tPNG are shown. (C) CV, inter-spike interval variability histogram for tPNG neurons: Red, tPNG in WM (notice
high CV values); Blue, spontaneous network activity, no PNG in WM (spike raster not shown). (D) Cross-correlograms of two neurons from the tPNG:
Red, tPNG in WM; Blue, spontaneous network activity. (E) Average firing rate histogram of three representative tPNG neurons (red) while the tPNG in
WM, and of a control neuron (blue) from the rest of the network. (F) Histogram of the duration of PNGs put separately in WM: time of the last
reactivation (after the offset of stimulation) of each PNG versus number of PNGs with a given maximum reactivation span.
doi:10.1371/journal.pcbi.1000879.g004

Spike-Timing Theory of Working Memory
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and both PNGs are simultaneously kept in WM for many seconds.

The model can hold several items in WM but eventually its

performance deteriorates with increased load (note the sub-linear

histogram in Figure 5B).

Novel Stimulus - Working Memory Expands Memory
Content

To demonstrate that a novel cue can be loaded and kept in

WM, we stimulated the network with a novel spike-timing pattern

repeatedly every 15 seconds (Figure 6). Notice that this spiking

pattern — triggered by the novel external cue — did not

correspond to any of the existing PNGs’ firing pattern. Each time

the new pattern is presented to the network, the synapses between

the stimulated neurons that fire with the appropriate order are

potentiated due to long-term STDP. In addition, synapses to

some other post-synaptic neurons that were firing by chance and

have synaptic connections with converging conduction delays

that support appropriate spike timing, are also potentiated [19].

Thus, the expansion of the network’s memory content, i.e., the

formation of a new PNG representing the novel cue, occurs via

the interplay of long-term STDP and repeated firing of neurons

with the right spatiotemporal pattern. This pattern can be

triggered by stimulation (as shown in [19]), or it could result from

autonomous reactivations due to WM mechanism (as shown in

Figure 6A and 6D). Therefore, the WM mechanism, by

facilitating the reactivations of the new PNG, facilitates the

formation of the new PNG. Despite that the new PNG consists

both of neurons that received (red dots in Figure 6D) and of

neurons that did not receive (marked black in Figure 6D) direct

stimulation during the cue presentations/learning, in order to

load and keep the cue in WM it is sufficient to stimulate those

neurons that were directly stimulated during learning. The

reactivation rate of the new PNG, 4 Hz, is similar to those

observed in Figures 4 and 5.

Discussion

Results of our simulations are robust with respect to the mechanisms

of associative short-term change of synaptic efficacies and to parameters

of the model, such as short-term synaptic decay time constants (see

Figures 4 and 5; and Figure S1); probability of random synaptic inputs;

or choice of the target PNGs (Figure 4 and 5; see also Figures S3 and S4,

where we replicate the results of Figures 4 and 5 using PNGs that

were manually generated and inserted in the network (see Methods)).

The underlying currency of information in the theory presented

here is the activation of a PNG. This, combined with an associative

form of short-term changes of synaptic efficacies results in

spontaneously emerging WM functionality: short-term synaptic

changes bias the competition between PNG reactivations, and give

rise to frequent spontaneous reactivations of the selected PNGs

(relative to the reactivation rate of the other PNGs), which are

expressed as short polychronous events with preserved intra-PNG

spike-timings. The simulations result in a network with large

memory content, and produce neural activity consistent with those

observed experimentally [1,3]. Our theory predicts that polychronous

structures are essential for cognitive functions like WM, and such

structures may be the basis for complex activity patterns observed in

neocortical assemblies [42] and for memory replays involving, for

example, prefrontal cortex, visual cortex, and hippocampus [43–

45]. Additionally, this theory makes a testable prediction that

changes in functional connectivity (as in Figures 4D and 5D) should

be observed experimentally in vivo during WM tasks.

Methods

Neuron Model
We use a model of spiking neurons [32,46] that was developed

to satisfy two requirements: It is computational simple and efficient

to implement in large-scale simulations, and it exhibits most of the

types of the firing patterns recorded in animals in vitro and in vivo.

Figure 5. Multiple overlapping polychronous neuronal groups in working memory. (A) Spike raster and firing rate plots as in Figure 4. The
first, red target PNG (tPNG) is activated at time 0 seconds; the second, black tPNG at time 5 seconds. The two PNGs co-exist in WM even though they
share more than 25% or their neurons, which fire with different polychronous patterns. (B) Capacity tested by multiple items in WM. (C) Magnified
plot of the spike rasters (red/black dots) of partial activation of the two tPNGs — red (left) and the black (right). Notation as in Figure 4B. (D) Red, left:
cross-correlograms of two neurons that are part of the red but not the black PNG, when only the red PNG is in WM (1ƒtv5 sec). Black, middle: cross-
correlograms of neurons that are part of the black but not the red PNG, when only the black PNG is in WM (spike raster not shown). Right: cross-
correlograms of two neurons, one from each target PNG, when both PNGs are in WM (t§6 sec).
doi:10.1371/journal.pcbi.1000879.g005

Spike-Timing Theory of Working Memory
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We use the differential equations in the form

v0~0:04v2z5vz140{uzI

u0~a(bv{u)

with the auxiliary after-spike resetting

if v§30 mV, then
v / c

u / uzd

�

Figure 6. Novel cue in working memory - Formation of new polychronous neuronal groups. (A–C) Over 90 second long spike raster: Blue
dots, spikes of excitatory neurons; Cyan dots, spikes of inhibitory neurons. Red colored dots denote the spikes of 60 randomly selected excitatory
neurons that received external stimulation with a polychronous pattern 10 times per second every 15 seconds (arrows). The pattern used for
stimulation represents the external sensory input generated by a novel cue. This pattern does not correspond to the firing pattern of any of the
existing PNGs. (A) 0.3 Hz non-specific noisy minis. (B) 0.1 Hz minis when secv75. (C) Short-term STDP blocked when �s�e�cv75. (A,B,C) Identical
conditions when secv75. (D, E) The [74 … 83] second segment of the spike raster data of A and B are magnified in D and E, respectively. (A,D) In the
presence of sufficient non-specific drive and short-term STDP, after repeated presentations a new PNG — representing the novel cue — emerges and
gets frequently activated (about 4 Hz). (D) Neurons that became part of the new PNG initiated by the spiking of red neurons are marked black. The
new group consists of 24 (out of 60) red and 118 black excitatory neurons. Notice that 36 of the stimulated red neurons did not become part of the
newly formed PNG probably due to the lack of appropriate synaptic connections. (B,E,C) Hardly any replay in B and E, and no replay at all in C.
Hampered PNG formation as WM mechanism was prevented.
doi:10.1371/journal.pcbi.1000879.g006

Spike-Timing Theory of Working Memory
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where v v and u are the membrane potential and recovery

variables, respectively; a,b,c, and d are parameters: a, time scale of

the recovery variable u; b, sensitivity of the recovery variable u to

the sub-threshold fluctuations of the membrane potential v; c,

after-spike reset value of the membrane potential v caused by the

fast high-threshold Kz conductances; d, after-spike reset of the

recovery variable u caused by slow high-threshold Naz and Kz

conductances.

Various choices of these parameters result in various intrinsic

firing patterns, including those exhibited by the known neocortical

neurons. Here a~0:02, b~0:2, c~{65, d~8 for regular spik-

ing pyramidal neurons, and a~0:1, b~0:2, c~{65, d~2 for

GABAergic fast spiking interneurons. Derivation of these equa-

tions/parameters are explained in [32,46]. 80% of the neurons in

our network are regular spiking pyramidal neurons and 20% of

them are GABAergic fast spiking interneurons.

Synaptic Connections
A careful measurement of axonal conduction delays in the

mammalian neocortex [33,35] showed that these delays could be

as small as 0.1 ms and as large as 44 ms, depending on the type

and location of the neurons. Moreover, the propagation delay

between any individual pair of neurons is precise and reproducible

with a sub-millisecond precision [33,34]. In our network (similar to

the network in [19]), excitatory synaptic connections have random

axonal conduction delays in the [1…20] ms range, therefore, it

can be considered as a subnetwork embedded into a large part of

the prefrontal cortex. All inhibitory connections are set to have

1 ms delays. The probability that any pair of neurons are

connected equals 0.1.

Synaptic Dynamics
Long-term dynamics. Excitatory to inhibitory and all

inhibitory connections are non-plastic. Excitatory synaptic

strengths change according to the STDP rule [47]. That is, the

magnitude of change of synaptic strength between a pre- and a

postsynaptic neuron depends on the timing of spikes: The synapse

gets potentiated if the presynaptic spike arrives at the postsynaptic

neuron before the postsynaptic neuron fires; Whereas, the synapse

gets depressed if the presynaptic spike arrives at the postsynaptic

neuron after that fired. Thus, what matters is not the timing of

spiking per se but the exact timing of the arrival of presynaptic

spikes to postsynaptic targets. Formally, the magnitude of change

for potentiation equals Aze{Dt=tz ; and for synaptic depression

is A{e{Dt=t{ , where Dt is the inter-spike interval between the

arrival of the presynaptic spike and the postsynaptic spike,

tz~t{~20 ms, Az~0:1, and A{~0:12. The synaptic

strengths are bound within the interval [0…8] mV, which

implies that the simultaneous arrival of at lease three pre-

synaptic spikes are needed to reliably elicit a post-synaptic

response. About 10{20 optimal pre-then-post spike pairs are

needed to increase the synaptic strength of a weak synapse to the

maximum value.

Short-term dynamics. The efficacy of synaptic transmission

for synapses connecting excitatory neurons are also scaled up or

down, relative to a baseline, on a short timescale. We implement

these short term dynamics in two form: short-term STDP and

NMDA spikes.

Short-term STDP: Without short-term changes, input to neuron i

at time t, I(i, t), equals
P

j[J sij , where sij is synaptic weight for the

synapse between neuron j and i; and J is the set of presynaptic

neurons whose spike arrived at neuron i at time t.

With short-term STDP the input changes to

I(i, t)~
X
j[J

sij(1zsdij):

That is, the effect of a presynaptic spike is scaled up or down by

the factor sd, where this sd variable is different for each synapse;

follows the classical STDP rule; and in the absence of synaptic

activity it decays back to 0 with a time constant 5 seconds.

Therefore, 1) in the absence of synaptic activity the synaptic

efficacy does not change; 2) pre-then-post spikes temporarily

increase the synaptic efficacy; and 3) post-then-pre spikes

temporarily decrease the synaptic efficacy. About 10{20 optimal

pre-then-post spike pairs are needed to gain a maximum of 100%

temporary increase relative to the baseline.

NMDA spikes: The voltage traces in Figure 2C and 2D are

simulations of a passive dendritic compartment with voltage-dependent

NMDA conductance. Parameters (see [46] for detailed description of

conductance based models): C~100 pF, Eleak~{60 mV,

gleak~10 nS, tNMDA~250 ms, ENMDA~55 mV; The voltage

dependence of NMDA conductance is described by the nonlinear

function g(x)~x2=(1zx2) if x§0 and g(x)~0 if xv0, where

x~(Vz65)=60 and V is the dendritic membrane potential. The

NMDA current is I
NMDA

~�gg
NMDA

g
NMDA

(t)g(x)(E
NMDA

{V ), where

gNMDA(t) is the time-dependent activation of NMDA channels due

to synaptic input, and �ggNMDA is the maximal conductance.

We select �ggNMDA so that the NMDA to AMPA current ratio is 9

to 1 at the fully depolarized postsynaptic potentials, resulting in 10-

fold increase in the effectiveness of the synaptic transmission and

in the hysteresis of NMDA current: Once gNMDA(t) is above

certain threshold value Ton and there is a somatic spike at the

postsynaptic compartment, the postsynaptic membrane potential

depolarizes enough to turn on the NMDA current. The current

remains on via positive feedback loop (Figure 2D), and the

postsynaptic potential remains depolarized, as long as �gNMDA(t) is

above certain lower threshold ToffvTon. The current turns off

when gNMDA(t) falls below the lower threshold, i.e., the positive

feedback is no longer capable to maintain the depolarization

needed to remove the magnesium block of NMDA channels.

We assume here that each synapse has its own postsynaptic

compartment with its own gNMDA(t), which is independent from

its neighbors. This conductance is increased by each arriving spike

and exponentially decays with the time constant of 250 ms. To

speed-up simulations of the network of 1000 neurons and to avoid

having 100,000 compartments, we model the NMDA synapses via

a hysteresis function: The synaptic efficacy is 10-fold tronger when

gNMDA(t)wTon~3:5 and there is a post-synaptic spike, and it

returns to normal values when gNMDA(t)vToff~0:5. This results

in an associative short-term plasticity, as the strength of synaptic

transmission between two neurons can be transiently increased if

the post-synaptic neuron fires persistently after the pre-synaptic

one.

Figure S1 demonstrates the NMDA spikes based WM

mechanism. For the figures in the main text short-term STDP

was used. Long-term STDP was used for the PNG formation, but

for demonstration purposes in Figure 4 and 5 the long-term

plasticity is blocked. In Figure 6 long-term and short-term STDP

work in parallel.

Finding Polychronous Neuronal Groups
After running the simulation for five hours, providing only

random synaptic input to the network, we analyzed the evolved

network data — synaptic connections, axonal conductance delays,

and synaptic strengths — using the methods described in [19] and
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found a total of N~7825 spontaneously generated, strongly

overlapping distinct PNGs; See Figure 3 for details on the

emerging PNGs. We used these spontaneously emerging PNGs for

the results shown in Figures 4 and 5.

Embedded in the noisy spike train are occasional precise spiking

patterns corresponding to spontaneous reactivations of PNGs [19].

Since each such PNG has a distinct pattern of polychronous spiking

activity, we use the pattern as a template to find the reactivation of

the PNG in the spike train. A PNG is said to be activated when

more than 25 percent of its neurons fire according to the

prescribed polychronous pattern with +5 ms jitter.

Stimulating a PNG
To select a specific PNG in WM, i.e, to temporarily increase the

intra-PNG synaptic efficacy, we transiently stimulate its neurons

sequentially with the appropriate spatiotemporal spike-timing

pattern [48–50]. What enters WM is possibly gated by attention.

To avoid modeling attentional mechanisms, we provide two

different gating implementations:

1. Stimulate the intra-PNG neurons sequentially with the

appropriate polychronous pattern 10 times during a one second

interval (as seen in Figures 4A and 5A) to temporarily increase

the intra-PNG synaptic efficacy. This simulates the arrival of

visually evoked volleys of spikes due to several micro-saccades

per second [50].

2. Stimulate the intra-PNG neurons sequentially with the

appropriate polychronous pattern but only one to three times in

the presence of elevated level of a simulated neuromodulator,

e.g., dopamine, that increases the synaptic plasticity rate (as in

Figure S2). This stimulation mechanism results in a 5-fold

faster rate of change of synaptic plasticity [51]. Dopaminergic

regulation of prefrontal cortex activity is essential for cognitive

functions such as working memory [52]. Elevated neuromod-

ulator level in this implementation increases the level of

sensitivity of WM to the current stimulus.

We also performed stochastic stimulations (for both types of

stimulations) where the firing response probability of individual

neurons to external stimulation was smaller then 1 and found the

qualitative behavior of the network to be similar. For example, the

response probability for the target neurons in Figure S2 is 0.8.

For the results presented in Figures 4E (and 6), and Figures S3

and S4, not all the neurons of the target PNG were stimulated

(with the appropriate polychronous pattern) but only the initial

segment of the target PNGs (80 percent in Figure 4E; 10 percent in

Figures S3 and S4). The rest of the target neurons (i.e., neurons

that were not stimulated but are part of the target PNG)

systematically joined the reactivation process. (For detailed

description, see the figure legends for Figures S3 and S4.)

Inserted Polychronous Neuronal Groups
For the results presented in Figures S3 and S4 we inserted

additional synapses in the randomly connected network in order to

form 100 new PNGs. Activity of each such PNG lasted for

200 milliseconds and it consisted of 40 neurons. Each intra-PNG

neuron has at least three converging synapses from other pre-synaptic

intra-PNG neurons (except for the first three neurons in the PNG).

Non-Specific Input to the Network
Throughout the whole simulation the network is stimulated with

stochastic miniature synaptic potentials (called ‘‘minis’’), and it

exhibits asynchronous noisy spiking activity. The average

background multiunit firing rate is around 0.3 Hz for the

simulations presented in the article. Qualitative behavior of the

network is similar to a wide range of noisy background firing

activity, which, however, cannot be too small, as some background

activity is necessary to initiate spontaneous PNG reactivations (see

Figure 6 and Figure S5), or too high, as that would interfere with

neural activity propagation within the PNG.

Spontaneously emerging PNGs in the simple network we used

tend to be prone to noise. This means that the initiated activity in

the PNG is less likely to propagate along the whole PNG in the

presence of high background noise (w2 Hz for excitatory neurons).

This is because neurons that should respond (fire) to presynaptic

activity and pass that activity to postsynaptic intra-PNG neurons are

likely to be inhibited or be in their refractory period if there is too

much background activity present in the network.

Manually inserted PNGs can be engineered to have redundant

connections, i.e, postsynaptic neurons have more presynaptic

connections (from multiple presynaptic neurons) than minimally

required to fire these postsynaptic neurons. This redundancy can

make these PNGs much more robust to noise: the inability of a

presynaptic neuron to fire (e.g. due to inhibition) is less likely to

prevent the propagation of activity in the PNG, as there are likely

other presynaptic intra-PNG neurons firing and passing the

activity to the same postsynaptic target.

CV - Variability of Inter-Spike Intervals
The first 20 seconds after stimulus presentation offset of the spike

trains of the target PNG were used for inter-spike interval (ISI)

analysis presented in Figure 4C and Figure S6, red histograms.

The data was collected over multiple trials. The coefficient of

variation (CV) measures the variation in the neurons’ ISIs:

CV~S(ISI{SISIT)2T1=2=SISIT, i.e., CV equals the standard

deviation of ISIs divided by the mean ISI. CV2, a local measure for

coefficient of variation, used for Figure S6 is less biased by non-

stationary ISIs. CV2 is computed by comparing each ISI (ISIn) to

the subsequent ISI (ISInz1) to evaluate the degree of variability of

ISIs in a local manner: SCV2T~1=(N{1)
P

n CV2(n), where

CV2(n)~2DISInz1{ISInD=(ISInz1zISIn). These measures are

identical to those used in [36].

Supporting Information

Figure S1 Maintenance of a polychronous neuronal group in

working memory with short-term amplification of synaptic

responses via NMDA spikes - One trial. Neurons of the target

PNG (to be loaded into WM) are stimulated with the appropriate

spike-timing pattern repeated 10 times, starting at t = 0 seconds -

similar to the mechanism used in Figures 4 and 5 of main text.

Solid lines: average multiunit firing rate of the target group (red)

and that of the rest of the excitatory neurons (blue). Blue dots,

spikes of excitatory neurons; Cyan dots, inhibitory neurons; Red

dots, spikes of the neurons belonging to the target group during

[partial] reactivations of the target group, that is, when more than

25 percent of its neurons fire with the expected (65 ms)

spatiotemporal pattern. Dark green line, time course of the

short-term synaptic decay without spontaneous replay of the target

group; time constant is 250 milliseconds.

Found at: doi:10.1371/journal.pcbi.1000879.s001 (0.81 MB TIF)

Figure S2 Increased plasticity rate modulated by elevated level of

a simulated neuromodulator. (A) Spike raster and firing rate plots

during a single WM task/trial. Solid lines: average multiunit firing

rate of the target group (red) and that of the rest of the excitatory

neurons (blue). Blue dots, spikes of excitatory neurons; Cyan dots,

inhibitory neurons; Red dots, spikes of the neurons belonging to the

target PNG during [partial] reactivations of the target group, that is,

Spike-Timing Theory of Working Memory
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when more than 25 percent of its neurons fire with the expected

(65 ms) spatiotemporal pattern. The target PNG was stimulated at

0 second and at 5 seconds (shading). The brown shaded area

starting a little before 5 seconds (better seen in subplots B and C)

denotes an elevated simulated neuromodulator level, which results

in 5 times faster plasticity change in the network. Therefore, fewer

PNG stimulation (three in this example) is enough to temporary

increase the intra-PNG synaptic efficacy and trigger WM

functionality. (B) Data and notation as in A but only neurons of

the target groups in the [5 … 10] second interval are shown. Data in

C is identical to B but the plotting of the neurons is reordered so

their polychronous firing is clearly visible as tilted lines.

Found at: doi:10.1371/journal.pcbi.1000879.s002 (1.15 MB TIF)

Figure S3 Maintenance of multiple representations in working

memory in a network with 100 embedded PNGs. The spike raster

shows only excitatory neurons participating in neuronal groups A13,

A92, A1, and A2. Activation of each such neuronal group, involving

more than 25 percent of its neurons is marked by spikes of different

color. Insets show raster plots corresponding to partial activation of

various neuronal groups. Circles show where the spikes are

expected, black dots show the actual spikes. The network exhibits

spontaneous activity except at 0 second (stimulation of the first ten

neurons belonging to A1) and 10 seconds (stimulation of the first ten

neurons belonging to A2). If a few neurons forming the ith PNG, Ai,

fire with the appropriate spike-timing, the rest of the neuronal group

responds with the corresponding polychronous firing pattern. For

example, the left two inserts show spontaneous activation of A13 and

A92. To select a PNG to be held in working memory we activate it

by an appropriate sensory input. For example, at time 0 seconds we

stimulated the first 10 neurons of the sequence A1 with the

appropriate timing 10 times per second during the interval of

1 second. (Notice that the first four stimulations are not colored as

less then 25 percent of the A1 was activated.) This stimulation

resulted in short-term strengthening of the synaptic connections

forming the initial segment of A1 via short-term STDP, but had little

effect on the other synapses. Upon termination of the simulated

applied input, the strengthened intra-group connectivity resulted in

the spontaneous reactivation of the initial segment of A1 with the

precise timing of spikes (3rd inset), leading often to the activation of

the rest of the sequence (marked by red dots). Each such

spontaneous reactivation of A1 results in further strengthening of

the synaptic connectivity forming A1, thereby maintaining A1 in the

‘‘active’’ state for tens of seconds. Notice that such an active

maintenance is accomplished without any recurrent excitation.

Even though each neuron in A1 fires with a precise timing with

respect to the other neurons in the PNG, the activity of the neuron

looks random. To illustrate maintenance of multiple memory

representations in working memory, we stimulate the initial segment

of group A2 with a 10 Hz 1 sec long specific excitatory drive. Even

though the neuronal groups A1 and A2 partially overlap, the

neurons fire with different timings relative to the other neurons

within each group, so there is little or no interference, and both

representations are kept in working memory for many seconds.

Found at: doi:10.1371/journal.pcbi.1000879.s003 (0.81 MB TIF)

Figure S4 Systematically changing persistent firing rates during

working memory tasks. Spike rasters and mean (over several trials)

firing rates of neurons at the beginning (A), middle (B) and the end

(C) of the polychronous sequence forming the neuronal group A1

(see Figure S3), and a control neuron (D) not belonging to the

PNG. Arrow marks the trigger stimulus. The firing rates of these

neurons have stereotypical profiles that are reproducible from trial

to trial (as are often those observed experimentally. Sensory stimuli

were needed to activate only the initial part of the corresponding

PNG (network noise prevents full activation of the sequence),

resulting in high firing rate in A, but low initial rates in B and C.

Subsequent spontaneous reactivations resulted in stronger synap-

ses and in longer sequences (insets in Figure S3) leading to the

steady increase in the firing rates (B and C lower panel). Often,

reactivation starts in the middle of the sequence, thereby

strengthening synapses downstream but not affecting synapses

upstream of the sequence. Eventually, the synaptic connections

forming the initial segment become weaker and that part of the

neuronal group stops reactivating, resulting in the decline in the

firing rate as seen in A and then in B. (E) Neurons in A1 are sorted

according to their relative spike-timing within the polychronous

sequence and show a single trial spike raster. A slowly traveling

wave (moving hot spot) of increased firing rates is generated by

spontaneous incomplete activations within A1. This wave could

provide a timing signal to a separate brain region to execute a

behavior or a sequence of behaviors locked to the onset of the

trigger stimulus. For example, a motor neuron circuit that needs to

execute a motor action 10 seconds after the trigger should have

strong connections from neurons 20 through 30 from the neuronal

group, but be inhibited by the activity of neurons 1 through 20. A

sequence of behaviors could be executed by potentiating

connections from multiple subsets of the neuronal group to

multiple motor-neuron circuits (e.g., via dopamine-modulated

STDP [Izhikevich E.M., 2007, Solving the distal reward problem

through linkage of stdp and dopamine signaling. Cereb Cortex 17:

2443–52.]). Similarly, activations of multiple representations in

short-term memory, as in Figure S3 (sec.15) and Figure 4 (main

text), would implement multiple clocks and multiple sequences of

actions.

Found at: doi:10.1371/journal.pcbi.1000879.s004 (0.57 MB TIF)

Figure S5 Interrupting the replay of PNGs maintained in WM.

Working memory functionality in our model emerges via the

interplay between spontaneous synaptic input (minis) and short-

term synaptic plasticity. Blocking the minis or diminishing the

effect of short-term plasticity can interrupt the replay process,

which provides a mechanism to remove an item from WM. Spike

raster and firing rate plots as in Figures 4 and 5 of main text. At

time 5 seconds, as an effect of change in a simulated neuromod-

ulator level, the short-term plasticity rate fades and, therefore, the

reactivation of the target PNG stops and the strength of synapses

of the target PNG decay to their baseline.

Found at: doi:10.1371/journal.pcbi.1000879.s005 (0.20 MB TIF)

Figure S6 Global versus local measures of CV. Upper row:

global CV (see Methods in main text for details); Results similar to

those in Figure 3C in main text. Lower row: CV2, a local measure

of CV (see Methods). The firing profile and the mean ISI of intra-

PNG changes systematically when the PNG is in WM (Figure 4E

in main text and Figure S4). Therefore, the ISIs during the replay

period are non-stationary, which results in high CV values (upper

left histogram).

Found at: doi:10.1371/journal.pcbi.1000879.s006 (0.13 MB TIF)
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22. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic
efficacy by coincidence of postsynaptic aps and epsps. Science 275: 213–5.

23. Brenowitz SD, Regehr WG (2005) Associative short-term synaptic plasticity

mediated by endocannabinoids. Neuron 45: 419–31.
24. Cassenaer S, Laurent G (2007) Hebbian stdp in mushroom bodies facilitates the

synchronous flow of olfactory information in locusts. Nature 448: 709–13.
25. Erickson MA, Maramara LA, Lisman J (2009) A single 2-spike burst induces

glur1-dependent associative short-term potentiation: A potential mechanism for

short-term memory. J Cogn Neurosci Epub ahead of print.
26. Schiller J, Major G, Koester HJ, Schiller Y (2000) NMDA spikes in basal

dendrites of cortical pyramidal neurons. Nature 404: 285–9.
27. Rhodes P (2006) The properties and implications of NMDA spikes in neocortical

pyramidal cells. J Neurosci 26: 6704–15.

28. Amit DJ, Bernacchia A, Yakovlev V (2003) Multiple-object working memory–a
model for behavioral performance. Cereb Cortex 13: 435–43.

29. Haarmann H, Usher M (2001) Maintenance of semantic information in

capacity-limited item short-term memory. Psychon Bull Rev 8: 568–78.

30. Aviel Y, Horn D, Abeles M (2005) Memory capacity of balanced networks.

Neural Comput 17: 691–713.

31. Roudi Y, Latham PE (2007) A balanced memory network. PLoS ComputBiol 3:
1679–700.

32. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural

Netw 14: 1569–72.

33. Swadlow HA (1985) Physiological properties of individual cerebral axons studied

in vivo for as long as one year. Journal of Neurophysiology 54: 1346–62.

34. Swadlow HA (1994) Efferent neurons and suspected interneurons in motor
cortex of the awake rabbit: axonal properties, sensory receptive fields, and

subthreshold synaptic inputs. J Neurophysiol 71: 437–53.

35. Swadlow HA (1992) Monitoring the excitability of neocortical efferent neurons

to direct activation by extracellular current pulses. J Neurophysiol 68: 605–19.

36. Compte A, Constantinidis C, Tegner J, Raghavachari S, Chafee MV, et al.
(2003) Temporally irregular mnemonic persistent activity in prefrontal neurons

of monkeys during a delayed response task. J Neurophysiol 90: 3441–54.

37. Fujisawa S, Amarasingham A, Harrison MT, Buzsáki G (2008) Behavior-
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